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The hard hexagon model in statistical mechanics is a special case of a solvable 
class of hard-square-type models, in which certain special diagonal interactions 
are added. The sublattice densities and order parameters of this class are 
obtained, and it is shown that many Rogers-Ramanujan-type identities natu- 
rally enter the working. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

In an  earl ier  paper ,  (1) I out l ined  the solut ion of the ha rd  hexagon  lat t ice 
mode l  in stat is t ical  mechanics ,  a n d  gave the pr inc ipa l  results. I men t ioned  
therein  that  var ious  R o g e r s - R a m a n u j a n - t y p e  ident i t ies  occur  na tura l ly  in 
the ca lcula t ion  of the sublat t ice  densit ies and  order  parameters .  Here  I 
want  to show how this comes about .  

In  Sect ion 2 I def ine a general ized ha rd -hexagon  mode l  (namely,  the 
h a r d  square  mode l  with d iagona l  interact ions) ,  state the cond i t ion  under  
which this has  been  solved, and  in t roduce  the var iables  x, r, w tha t  will be  
used in the fol lowing sections. Then  in Sections 3 and  4 I a t t empt  to give 
some idea  how one calculates  the sublat t ice  densi t ies  Ok, cu lmina t ing  in the 
fo rmula  (36). A more  comple te  descr ip t ion  of this working,  as well as the 
ca lcula t ion  of the par t i t ion  funct ion,  will be pub l i shed  later.  (2) 
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In Section 5 I show explicitly how the various Rogers-Ramanujan- 
type identities occur in the evaluation of this formula. This section needs 
the prior equations (15) and (28)-(38); otherwise it can be read indepen- 
dently of the rest of the paper. 

Finally, in Section 6 I briefly mention the critical behavior of the 
model. 

2. DEFINITIONS 

Start by considering a hard square lattice gas with diagonal interac- 
tions. Let the lattice have N sites, labeled i = I . . . . .  N. With each site i 
associate an occupation number (or "spin") o,., with value 0 or 1. (The value 
0 corresponds to the site being empty; the value 1 to it containing a 
particle.) Impose the condition that if i a n d j  are adjacent sites, then a i and 
oj cannot both be 1, i.e., 

oioj = 0 if i a n d j  are nearest neighbors (1) 

(This corresponds to the "hard square" condition that no two particles can 
be adjacent.) 

The set o = {o I . . . .  , ou} then specifies the state of the system. The 
probability of a state is 

p ( ~ ) = Z - '  I I  W(o, ,o j ,  ok, o,) (2) 
( i , j , k , l )  

where the product is over all faces of the lattice, i, j ,  k, l being the four sites 
round the face, arranged as in Fig. 1. The function W(a,  b, c, d)  is given by 

W ( a , b , c , d )  = ,z (a+b+c+d)/4eLac+Mbdt-a+b-c+d if ab = bc = c d =  da = 0 

= 0 otherwise (3) 

Fig. 1. 

I k 

./" 

i j 

A typical face of the square lattice, i, j ,  k, l being the surrounding sites. The diagonals 
associated with the interaction coefficients L, M in (3) are indicated. 
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This definition ensures that a state has zero probability if it violates the rule 
(1). The parameter t plays a trivial role in the working, since it cancels out 
of the expression (2) for p(a):  even so, it simplifies some of the following 
discussion to include the t factor in (3). 

As well as t, the numbers z , L ,  M (the activity and the interaction 
coefficients) are at our disposal: normally we require them to be real, and z 
to be positive. The number Z is a normalization factor (known as the 
partition function), which is chosen to ensure that ~ p ( a ) =  1, so 

Z = ~ I-I W(~ 9 '  ~ o~) (4) 
(~ (i,j,k,l) 

The o sum is over all values of o l, . . . ,  o N, subject to the condition (1), and 
possibly subject to the spins on the outer boundary of the lattice being 
given prescribed values. In this paper I am interested in calculating the 
average value of o i for some particular site i, say site 1. This is defined to be 

(o,) = (5) 
O 

From (2) and (4) we see that 

~ O l  IX W(oi'oj'Ok'Ol) 
( a , )  = " ( i , j , k , t )  (6) 

I-[ W(oi'Oj'Ok'Ol) 
a (i,j,k,l) 

(This average is the local density at site 1.) 
It turns out that ( o l )  can be calculated (in the limit when the site 1 is 

in the middle of an infinitely large lattice), provided that 

z = (1 - e-C)(1 - e - M ) / ( e  L + M -  e L -  e M) (7) 

This restriction is satisfied automatically in the limit L ---) 0, M---) - ~ .  This 
case is of particular interest since it corresponds to no interaction along 
N E - S W  diagonals, but complete repulsion between N W - S E  diagonally 
adjacent particles. The model then reduces to a triangular lattice gas with 
nearest-neighbor exclusion, i.e., "hard hexagons." 

The case L = M = 0 ("hard squares") does not satisfy (7) and has not 
been solved exactly, though approximate results are available. ~3-5) 

As I have indicated earlier, (1) one is led to define 

A = z - 1 / 2 ( 1  -- ze  L+M)  (8) 

and to regard A as a constant, and L , M  as variables satisfying the 
restriction (8). Eliminating z between (7) and (8) gives a symmetric biquad- 
ratic relation between e L and e g .  This can conveniently be parametrized 
by introducing elliptic functions. We have to distinguish the cases IzXl < ~c 
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Fig. 2. The six regimes in (L, M)  space. Shaded regions correspond to z in (7) being negative, 
so are "unphysical." The (I, II), (1II, IV), and (V, VI) regime boundaries occur when ]A] = A C. 

and IAI > A c, where 

A~-2 = [ �89 + 1)]5= �89 + 5~-)  = 11.09017 . . . (9) 

Altogether there are six regimes in (L, M)  space to consider, as indicated in 
Fig. 2. In regimes I . . . . .  VI we have A > A , 0 < A < A ,  - - A  < A < 0 ,  
A < --2X~, A > A ,  0 < A < A,  respectively. Regimes V and VI differ from I 
and II only by interchanging L and M (which is equivalent to rotating the 
lattice through 90~ so they will not be further considered herein. 

Note that IAI = A c on the boundary between regimes I and II, and 
between III and IV. These are the "critical lines" of the model. 

We parametrize L, M,  t as functions of three new variables x, w, r, as 
follows. Define 

(1 - xSn--4) (1  - -  X 5 n - l )  

,=1(111 x S n - 3 ) ( 1  X 5 n - 2 )  (10a) g 

and, for j -- 0, 1,2, 3, 4, 

fj. = f i  (1 - xS"-5+Jw)(1 - x5n-jl'~ -|) (10b) 
n = l  

(Note that f0 . . . . .  f4 depend on w: basically they are elliptic theta func- 
tions.) In regimes I and IV we can parametrize (7) and (8) as follows: 

e L =  - w f | f 4 / ( x g f g  ), e M = f l f 3 / ( g f  2) 

= X -3-'2 -'21 "c4 [--g (xf~) ] (II) Z -- gYoY2/Yl ,  t - -  r f ~ /  1/4 

2~-z = _ xg s 



Rogers-Ramanujan Identities in the Hard Hexagon Model 431 

the parameters x, w, r being real and satisfying 

RegimeI:  0 > x > - l ,  1 > w > x  2 

Regime IV: 0 > x > - l ,  x - 2 > w > l  

In regimes II and III we use the alternative parametrization: 

eL= wgf2f3/(xfg), 
X 2 2 3 4  

z =  f ( ~ f ~ / ( g ' f ~ ) ,  

A -2 = x - l g  -5 

eM=gf, f2/(wfg) 
I f 2 / (  g f2 ) ] l / 4  t = r  x 

(12) 

(13) 

Regime II: 0 < x < 1, X - 1  > w > 1 (14) 

RegimelII :  0 < x < l ,  1 > w > x  

This parametrization ensures that e L and e M are single-valued func- 
tions of w, while A is independent of w: A depends only on x. 

As Ix[---) 1, IAI tends to A c and the point (L, M) approaches the I - I I  or 
I I I - IV inter-regime boundary in Fig. 2. These are the "critical lines" of the 
model. 

As x---)0, there are a few states a whose probabilities p(a)  tend to 
nonzero limits; the probabilities of all other states become zero. I shall call 
these states that survive the limit x ~ 0 the "ground states." 

In regime I and III there is just one ground state, namely, a = (0, 
0 . . . . .  0), where all occupation numbers are zero (the vacuum). In regime 
IV there are two ground states: that shown in Fig. 3a, and the one 
obtainable from it by shifting all particles one site to the right. In regime II 

. I ' . . I  

�9 . . . . .  I ' . .  I ' ,  I " 

l ........ 

........... , ? l J ' l  - ......... ........ 

(a) (b) 

Fig. 3. Typical ground states in regimes IV and II, respectively. Solid circles denote particles 
(a i = 1), unmarked sites are empty (a i ~- 0). The other ground states can be obtained by 
shifting all particles one site to the right (or to the left). 
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there are three ground states: the one in Fig. 3b, and the two obtainable 
from it by shifting all particles to the right, or all to the left. 

The ground states in IV are the close-packed arrangements of the 
hard-square lattice gas. If we add NW-SE diagonals to the square lattice, 
as in Fig. 3b, we transform it into the triangular lattice gas: the ground 
states in II can then be seen to be the close-packed arrangements of the 
hard-hexagon lattice gas (triangular lattice gas with nearest-neighbor exclu- 
sion). I therefore refer to the ground states in IV as "square-ordered," those 
in II as "triangular-ordered." 

We shall find it useful to define the functions (for Ix I < 1) 

o~ 

Q(x) = 1-I (1 - x n) (15a) 
n = l  

e(x) = H (1 - x 2 n - l )  ( 1 5 b )  
n = l  

o~ 
G ( x ) :  H [ ( 1 -  x5n--4)(1-- xSn--])] -1 (15C) 

n~l 
oo 

U ( x ) =  l'I [ ( 1 -  x S ' - 3 ) ( 1 -  xSn-2)] --' (15d) 
n ~ l  

Then g = H(x) /G(x) ,  so the equations (11) and (13) for A can be 
written as 

A -2 = - x [ H ( x ) / G ( x ) ]  s in I and IV 

= x - ' [  G(x ) /H(x ) IS  in II and III (16) 

The reader who is acquainted with the Rogers-Ramanujan identities 
should already feel he or she is entering familiar territory, even though all 
we have done so far is to parametrize the relations (7) and (8). 

Given L, M, and t, we can regard z, A as defined by (7) and (8), x by 
(16), and w and r by ( l l )  or (13). Alternatively, we can regard x ,w,r  as 
given, and L,M,z , t ,A  as defined by (11) or (13). From now on I shall 
adopt the latter viewpoint. 

3. CORNER TRANSFER MATRICES (CTMs) 

I calculate (o l )  by introducing "corner transfer matrices." Consider a 
square lattice of m + 1 rows and columns, as in Fig. 4a. Fix the spins on the 
lower and right-hand boundary sites (those denoted by crosses) to have 
their ground-state values. (In regimes II and IV we must specify which 
ground state.) Fix those on the left-hand and upper boundary sites (de- 
noted by open circles) to have the values/~l . . . . .  /~,, and/;1 . . . . .  /L m, as 
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Fig. 4. The lattices whose partition functions are A~u,, Z in (17), (18), respectively. The latter 
is made up of four quadrants (or "corners"), each of the same size as the former. It has 2m + 1 
rows and 2m + 1 columns; a I =/~l is the center site. Spins on outer boundary sites (denoted 
by crosses) are fixed at their values for some particular ground state. 

indicated. S ince /~  a n d / ~  are both  the value of the top-left  spin, we must  
have #1 = #'1; otherwise #1 . . . . .  #m a n d / ~  . . . . .  #~ are at  our  disposal. Let  
us write/z for  the set {/~1 . . . . .  #m}, and  # '  for {/~'l . . . . .  /~,). 

The  part i t ion funct ion is given by  (4), where the sum is now only over  
spins on interior sites of the lattice in Fig. 4a. Plainly the part i t ion funct ion 
depends  on # and /~ ' ,  so we can  write it as Av~,. If is useful to adop t  the 
convent ion  that  #1 m a y  differ from/(1,  but  A~,  is then zero. Thus  in general 

A~t~' = ~(~s ~ s  H W ( ~ 1 7 6 1 7 6 1 7 6  (17)  
e ( i , j ,k , l )  

Here  8(a,  b) = 1 if a = b; = 0 otherwise. 
By rotat ing Fig. 4a anticlockwise through 90 ~ 180 ~ 270 ~ we can 

similarly define quantit ies B,~,, C,~,, Dr,, ,  respectively. 
N o w  consider the lattice in Fig. 4b, with 2m + 1 rows and  columns.  

Divide it into four  quadrants ,  as indicated by  the heavy  lines. Fix the 
bounda ry  spins (on sites shown by  crosses) to have  their values for  some 
par t icular  g round  state. Let/~1 =/z~ = ~'1' = /~ ' ( '  be  the spin at  the center  of 
the lattice; let/~ = { #~ . . . . .  /Xm} be the m spins on the lower half  of the 
heavy  vertical line (on sites m a r k e d  by  open circles), count ing f rom the 
center  downwards ;  let /~' be the spins on the right half  of the heavy  
horizontal  line, count ing outwards;  and  similarly for /~"  a n d / z ' " ,  as indi- 
cated. 
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The partition function Z is given by (4): note that the summand is a 
product of 4m 2 factors, one for each face. It can certainly be grouped into a 
product of four terms, one being the product of the factors of the faces in 
the lower-right quadrant, another for the upper-right quadrant, and so on. 
Summing over all internal spins in Fig. 4b, other than those on the heavy 
lines, it follows that 

/t /~, /~- /~,,, 

the factor A~v, coming from the lower-right quadrant, B,,~,, from the 
upper-right quadrant, and so on, as indicated in Fig. 4b. 

Strictly, the summation in (18) is subject to the restriction/~1 =/~] =/t~' 
=/~'(', since each is the value of the center spin. However, the Kronecker 
delta in (17) ensures that the summand is zero if this condition is violated, 
so no harm is done by abandoning the restriction. It is then apparent that 
(18) may be written as 

Z = T r A B C D  (19) 

where A is the matrix with entries A~V in positions (/~,/z'); and similarly for 
B, C, D. These matrices are known as the corner transfer matrices. 

Now look at the expression (6), still using the lattice of Fig. 4b, and 
taking o 1 to be the center spin. The denominator in (6) is just the partition 
function Z in (19). The numerator is similar, but contains an extra factor o 1 

I I t  in the summand. Since o I --/~1 = #1 =/~1 =/ t ]" ,  the numerator is given by 
(18), but with an extra factor/~1 in the summand therein. It follows that (6) 
can be written as 

(o l )  _ Tr S A B C D  (20) 
T r A B C D  

where S is the diagonal matrix with entries 

S~, = ~1 r I  6( ~'i, ~;) (21) 
i = 1  

The Kronecker delta in (17) ensures that the matrices A, B, C, D are all 
block-diagonal, having one block of nonzero entries with bq =/~] = 0 and 
another block with/h -- #] - 1. They therefore all commute with S. 

The next step is to go to a representation in which the corner matrices 
are diagonal. More precisely, let h e be the rth largest eigenvalue of the 
product matrix ABCD,  and let xp be the corresponding eigenvector, nor- 
malized so that x~yp = 1. Then we can define vectors yp, zp, to, normalized 

so that y fyp  = zfzp = t f t  e = 1, and such that 
A y p  = = 

Ctp = VpZp, OXp = 6ptp ( 2 2 )  
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where ap, flp, Tp,6p are scalars, and ~=apBpypSp. We can choose the 
vectors xp, yp, zp, tp so that either they all have nonzero entries only for rows 
with #l = 0, or they all have nonzero entries only for rows with /~1 = 1. 
Setting ~p = 0 in the former case, and ~e = 1 in the latter, it follows that 

sxe= eXp, Syp= eYe (23) 
=  eZe, ste = 

It is convenient to work with the ratios 

ae = aela,, be = flelfl, (24) 

Since ~1 = al fllY161 is the largest eigenvalue of ABCD, apbpepdp cannot be 
greater than one. 

The trace of a matrix is the sum of its eigenvalues. Dividing the 
numerator and denominator of (20) by al flly161, it follows that 

( o , ) =  E ~papbpcpdel E aebpced e (25) 
P P 

This is the formula that will be used in the rest of this paper. However, 
before leaving the corner transfer matrices it is worth noting that they do 
have some symmetry properties. 

From (3), the function W(a, b, c, d) is unaltered by interchanging a 
with c, corresponding to reflecting about the NW-SE diagonal. The various 
possible ground states (the vacuum and those shown in Fig. 3) also have 
this reflection symmetry. From (17), remembering that the spins on the 
lower and right boundaries in Fig. 4a are fixed at their ground-state values, 
it follows that .4,,, = A,,~, i.e., A is a symmetric matrix. Similarly from the 
analogs of (17) for B, C, and D, we find that 

A t = A ,  C r =  C, B r = D  (26) 

In regimes I, III, and IV there is also a reflection symmetry about the 
NE-SW diagonal, implying that B T= B, D r =  D, A r = C. However, this 
additional symmetry is violated by the ground states obtained from Fig. 3b 
by uniform translation, so it does not always apply in regime II. 

4. EIGENVALUES OF THE CTMs 

So far everything I have said has been rigorously correct: in particular, 
(25) is exactly true for all positive integers m. Now I assume that, for any 
fixed value of p, sp, ap, b e, cp, dp all tend to finite limits (in general nonzero) 
as m ~ oo. Further, if these limiting values are substituted into (25), then 
the resulting infinite sums are convergent, and converge to the limiting 
large-m values of the original sums. 
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This is not of course obvious, but is plausible and seems to be correct 
for quite general functions W(a,b,c ,d) .  One can write down equations 
satisfied by the CTMs, go to a representation in which A,B ,  C, D are 
diagonal, and take the limit in which the lattice is infinitely large and the 
matrices are of infinite dimensionality. (6) The nature of this limit has been 
studied for the zero-field Ising model by Tsang. (7) Numerical and series- 
expansion studies of the CTM equations have been made for monomer- 
dimers, (8) the Potts model, (9) the Ising model in a field, (1~ the hard square 
lattice gas, (5) and hard hexagons. (11) All these calculations are fully consis- 
tent with the above assumptions: I believe them to be true. 

If these assumptions are accepted (together with similar ones about the 
existence of limiting values of related quantities, and the interchangeability 
of limits), then for hard hexagons (and the eight-vertex model) the limiting 
values of ae,bp, ce, d e can be calculated indirectly. This is shown else- 
where. (2'12) Very briefly, the trick is to regard the matrices A,B,  C,D as 
functions of r and w, so we can write them as A(r,w),  B(r,w),  C(r,w), 
D(r,w). [Since r enters the weight function W(a,b ,c ,d )  only via the t in 
(3), the r dependence is rather trivial: t cancels out of the summand in (17), 
except for a factor t ~' coming from the top-left site in Fig. 4a. This means 
that the/~1 = / ~  = 0 diagonal block of A (r, w) is actually independent of r, 
while the/x 1 =/~'~ = 1 block is simply proportional to r; similarly for B -  1, 
C, D -1. Even so, it is still helpful to think of r as a variable.] 

Assuming that various limits can be interchanged, one can show for m 
large, for any numbers w, w' lying in the appropriate interval (12) or (14), 
and for all r, r', that 

A (r, w)B(r',  w') = k(w,  w ' )T(r / r ' ,  w /w ' )  (27) 

Here k(w,w')  is a scalar and T(r,w) is a matrix whose elements are 
functions of r and w. [This is basically equation (4.13d) of Ref. 12, w being 
the exponential of a constant times u.] 

Corresponding equations apply to the product of B with C, C with D, 
and D with A. From these it follows that the vectors x e, ye,zp, t v are 
independent of r and w, and that a e, b~-1, ce ' dp-1 are each proportional to 
r:w n, where [, n and the proportionality coefficients can depend on p and 
the parameter x, but not on r and w. In fact g is the ~p in (23); n is the same 
for ap, b e- 1, ce and dp -1. 

The proportionality coefficients can be evaluated either by considering 
special values of w (notably w --- 1), or by using the inversion relation (31) 
in Ref. 1 (noting that A , B  therein are replaced here by B,A).  The 
exponents n (one for each value of p) can be shown to be integers. [This is 
basically just a corollary of the fact that z 1/2, e L and e M, as given by (11) 
or (13), are Laurent-expandable in powers of w.] Assuming that the 
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exponents n do not change discontinuously with x inside a regime (there is 
no reason to suppose that they do), they must therefore be independent of 
x, so they can be evaluated from an appropriate small-x limit. The 
eigenvalues ap, bp, e e, d v are then completely determined. 

When considering this small-x limit, it is necessary to take account of 
the boundary condition, namely, that all the spins on the boundary sites in 
Fig. 4b (those indicated by crosses) be fixed at the values they would have 
in one of the ground states. (This condition is necessary for the existence 
and interchangeability of the large-m limits.) 

It is also convenient to have names for the corresponding ground-state 
values of some of the interior spins. In particular, consider the spins on the 
lower-half of the central vertical line in Fig. 4b, i.e., those with values 
/~ = (/~l, �9 �9 �9 Let s = ( s l , s 2 , . . .  } be their values for the ground state 
under consideration. 

In regimes I and III there is only one ground state, namely, the 
vacuum. Thus 

I and III: sj = 0, all integersj (28a) 

In regime IV (square ordering) there are two ground states: that shown in 
Fig. 3a, and the one obtained from it by shifting all particles one site to the 
right. This means that 

IV: s2j+~ = 1, S2j+k+l = 0, all integersj (28b) 

where k = 1 for the first ground state, k = 2 for the second. In regime II 
(triangular ordering) there are three ground states: that shown in Fig. 3b, 
and the two obtained from it by uniform translation of all the particles. 
Thus 

II: s3j+k = 1, s3j+k+_l = 0, all integersj (28c) 

where k = 1, 2 or 3, depending on the ground state. 
When evaluating a e, bp, ce, d p, we therefore first specify the regime. 

Then in regimes IV and II we also specify the ground state: this can be 
done by giving the value of k in (28b) or (28c). Altogether there are seven 
cases to consider (1 + 1 + 2 + 3). 

To express the results, let o = (o 1, . . . ,  on)  be a set of m spins, each 
with value 0 or 1, satisfying the constraint 

t ~ + ,  = 0, j = 1 . . . . .  m (29) 

where o m + 1 = s m  + 1. Define 

r 2 = - x g - ' ,  x - ' g ,  xg,  - x - ' g - '  
(30) 

W 0 ~ - - X  3, X - 3 / 2 ,  X~ X - 2  
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in regimes I, II, III, IV, respectively. Set 
m - 1  

n ( o ) =  E J ( ~ + l - - X j + l )  i n I a n d l V  
j = l  

= ~ J(Os+l -- OjOj+ 2 -- Sj+ 1 + SjSj+2) 
j = l  

where 

in II and III (31) 

•p=O 1 

ap = cp = rO~-S~w n(~ 

bp = dp = (ro/r)O'-S'(wo/W) n(*) 

(33) 

where now it is natural to label the eigenvalues by the spin-set o, rather 
than the integer p: put another way, we can construct a one-to-one 
correspondence between positive integers p and spin-sets o satisfying (29). 
(Remember that p is the position of the eigenvalue product apbpcpdp in a 
decreasing sequence.) It is always true that p = 1 corresponds to o = s. 
Further, for any value of p, there exists an integer l (independent of m) 
such that if m > l, then oj = sj for j = l + 1 . . . . .  m. 

Substituting the expressions (32) into (25), it follows that 

(o , )  = ~o ~176 ~oo~'~ ~'2~176 "vO (34) 

where the sums are over all values of o = (e l . . . . .  Ore) satisfying (29). 
Note that r and w have cancelled out of this expression. (This is to be 
expected because two models with different L, M, t, but the same A, have 
row-to-row transfer matrices that commute. Their eigenvectors ~p therefore 
depend only on A, i.e., on x. Since (o l )  = +rot+, where • is the maximal 
eigenvector of the transfer matrix, it therefore depends only on x.) 

The results (33) and (34) are only true in the limit m-~ oo (p fixed). 
However, it is convenient here to regard m as large but finite, and to defer 
explicitly taking the m ~ ~ limit until later. 

Apart from boundary conditions, the model is translation invariant. If 
we consider a finite number of sites i near the center of the lattice, and then 

Ore+ 1 = S,,+I and ore+ 2 = Sin+ 2 (32) 

Here s l , s z , . . ,  are the ground-state spin values in (28). In regimes II and 
IV they depend on the value of k in (28c) and (28d), so n(o) therefore also 
depends on k. [The explicit dependence on s in (31) is rather trivial, merely 
contributing an additive constant to n(o): it is the boundary condition (32) 
that is important.] 

Using these definitions, it turns out that ~p, ap, bp, cp, dp are 
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let the lattice become infinite in both directions (m ~ oe in Fig. 4b), we 
might expect the disturbing effect of the boundary conditions to disappear, 
and the sites to become equivalent. 

In regimes I and III (the disordered regimes), exactly this happens. 
The local density (oi) is the same for all sites i, so (o l )  = p, where p is the 
mean density of particles. 

In regime IV (square ordering) it does not happen, and translation 
invariance is said to be "spontaneously broken." In this case (oi) has one 
value if i lies on the sublattice of solid circles in Fig. 3a, another value if it 
lies on the other sublattice. These two values are the sublattice densities 01 
and P2, respectively. The total mean density is O = l(Pl + 02)- 

Regime II (triangular ordering) is similar except that now there are 
three sublattices: the sublattice of solid circles in Fig. 3b, the sublattice of 
sites that are one space to the right of a solid circle, and the sublattice of 
sites that are one space to the left of a solid circle. Then (oi) has one value 
if i lies on the first sublattice, another value for the second sublattice, and 
another value for the third. These values are the three sublattice densities 
PI,Oz,P3, and the total mean density is 1o=(01 "u Here we 
arrange the boundary conditions so that sublattice 1 is occupied preferen- 
tially: it is still true that sublattices 2 and 3 are equivalent, and hence that 

02 = P3" 
In our calculation we have considered a fixed site (site 1 at the center 

of Fig. 4b), but can vary the preferred sublattice by varying the boundary 
conditions. This is done by changing k in (28b) or (28c). In all cases it is 
true that 

Ok = ( ( l l )  (35) 

the suffix k being redundant in regimes I and III. 
Using the expression (34) for (ol) ,  singling out the ol summations for 

special attention, we obtain 

where 

Pk = r2Fk(1)/[F~(O) + r2Fk(1) ] (36) 

Fk(al) = ~ w~ "(") (37) 
0 2 ~  . . . ) O m  

the summation being over all values (0 or 1) of o2 . . . . .  on, subject to the 
constraint (29). 

We are interested in the extent to which the translation invariance is 
spontaneously broken. In both regimes II and IV this is measured by the 
"order parameter" 

R = 0, - P2 (38) 
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5. EXPLICIT FORMULAS FOR THE VARIOUS CASES 

I have now set the stage to the point where I can begin to show how 
Rogers-Ramanujan-type identities occur in this model. Before doing so, I 
should recapitulate the results that will be needed. 

There are four distinct regimes to consider: I, II, III, and IV. There is 
an independent real variable x, which lies in the interval ( -  1,0) in regimes 
I and IV, and in the interval (0, 1) in regimes II and III. There is a set of 
integers sl,s2,s 3 . . . .  defined by (28); in regimes II and IV this set depends 
on an integer k which can take the values 1, 2, or 3 in regime II, and values 
1 or 2 in regime IV. 

The number g is defined by (10a), and the functions Q(x), P(x), G(x), 
H(x) by (15). Comparing these, it is apparent that 

g = H ( x ) / G ( x )  (39) 

The numbers r 0, w 0 are defined by (30), and the function n(o) by (31) 
and (32), where m is a positive integer that is at our disposal, but which we 
ultimately intend to become infinitely large. The function Fk(ol) is defined 
by (37), where the summation is over all values (0 or 1) of 02 . . . .  , % that 
satisfy (29). The sublattice densities Ok are then given by (36). We expect 
them to tend to finite limits (between 0 and 1) as m ~  oo. We want to 
obtain tractable expressions for these limiting values, and for the order 
parameter R in (38). 

The suffix k is redundant in regimes I and III: I shall omit it therein. 
From now on I shall adopt the convention that 

Z (40) 
( l ,m)  

denotes a summation over o t . . . . .  o m (each with value 0 or 1), subject to the 
constraint (29). Note that this constraint automatically induces a depen- 
dence on o t_ 1, and on the boundary value Sr~+l of the spin % + 1. I shall 
also use the standard notation (13) 

n--1 

(a; q), = 1"I (1 - aq j) (41) 
j ~ 0  

(q),, = (q; q). = ~~ (1 - qJ) (42) 
j = l  

Regime I 

From (30), (39) and (12): 

W 0 = - -  X 3, 

5.1. 

r~ = - xG(x ) IH(x )  (43) 
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where - 1 < x < 0. From (28a), (31), and (37), 

r(oi)___ ~ qO2+2o3+3o,+ ...+(m-,)o~ (44) 
(2, m) 

where q = x 6. There is only one ground state (the vacuum), so the suffix k 
in (37) is redundant.  

Define, for l = 1 . . . .  , m - 1, 

G , (o t )=  Z qEi,,,+l (45) 
( l+  1, m) 

where the inner sum is over i - -  l . . . . .  m - 1. Considering explicitly the 
contributions from o~+ ~ = 0 and ox+ ~ -- 1, it is easily seen that 

O,(0) = O,+~(0) + q'O,+,(1) 
(46) 

GI(1 )  = e l + I ( 0  ) 

for l = 1 , . . . ,  m - 1 [taking G,, (0) --- 6;,,(1) -- 1]. 
We can immediately take the limit m ~ oo. We still have (46), for all 

positive integers l, together with the "boundary  condition" 

O,(0), O,(1)--> 1 as l -+ ~ (47) 

We can expand Gt(0) and GI(1) in increasing powers of ql, with coefficients 
that  depend on q but are independent  of I. Substituting the expansions into 
(44), the coefficients can be obtained recursively, giving 

Gt(O ) = ~ qrt+r(r-,)/(q). 
r=0 (48) 

Gt(l ) ~ rt+? = q / ( q ) .  
r=O 

It is evident from (44) and (45) that F(o 0 = G1(ol), so 

oo 
F(O) = ~ q;/(q).  

r=0 (49) c~ 

F(1) = ~ qr(,+,)/(q). 
r=0  

Also, taking ratios of the two equations (46), it is readily seen that 
F(1)/F(O) [and F(0) and F(1) enter (36) only via this ratio] is the simple 
continued fraction 

F(1)/F(O)= 1/(1 + q/(l  + q2/(1 + q3/(1 + . - .  )))) (50) 
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The series on the right of (49) are very well known in the mathematical 
theory of partitions. (14) Rogers (~5) proved that 

F(O) = G(q), F ( I ) - -  H(q)  (51) 

where G(q) and H(q) are the functions defined in (15). These identities 
were rediscovered by Ramanujan, (16) and are known as the Rogers- 
Ramanujan identities. 

The functions G and H therefore occur not only in our formulas (16) 
and (43) for k and r 0, but also in our results for F(0) and F(1). It is 
intriguing that this should be so. It is also very useful: in statistical 
mechanics we are particularly interested in the critical behavior, which in 
this case is the behavior of p near x = - 1  and q = 1. The series (49) are 
quite tricky to analyze near q = 1, but the products (15) are basically 
elliptic theta functions, and can readily be handled by going to the 
conjugate modulus. 

The simplifications do not stop at (51). Substituting these results into 
(36), using (43), and remembering that q = x 6, we obtain 

p = - x G ( x ) H ( x 6 ) / [ H ( x ) G ( x  6) - xG(x )U(x6) ]  (52) 

Ramanujan stated [Eq. (8) of Ref. 17], and Rogers (~8) proved that 

H ( x ) G ( x  6) - x O ( x ) H ( x  6) = e ( x ) / P ( x  3 ) (53) 

where P(x) is defined in (15). The denominator in (52) therefore simplifies 
dramatically, and we finally obtain 

p = - x G ( x ) H ( x 6 ) p ( x 3 ) / p ( x )  (54) 

5.2. Reglme I I  

Regime I is the easiest case to discuss; this is the hardest. The function 
n(o) is more complicated and there are three cases to consider, correspond- 
ing to k = 1, 2, 3 in (28c). 

From (30), (39) and (14) we have 

Wo= x -3/2, (ss) 

where 0 < x < 1. From (28c), (31), and (37), we have 

Fk(o,) __ ~ qEi(o,o,+2-o~+,+ .... ) (56) 
(2, m) 

where q - - x  3 and the inner summation is over i = l  . . . . .  m. The k 
dependence enters via (28c) and the boundary condition (32). 
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We can set up recurrence relations to evaluate Fk(O1). They are similar 
to (46), but more complicated because of the oioi+ 2 term in (56). Set 

G,(o,,o,+l)= (57) 
( l +  2, m) 

where now the inner summation is from i = l to m, and the k dependence is 
implicit. Then by considering the sum over or+2, it is readily verified that 

al(O,O) ~-- fl[ a/+l(0,0) "~ a/+l(0, 1)] 

G,(0, 1) = f tq- tGl+,(1,0)  (58a) 

G,(I,0) = f,E G,+,(0,0) + 1)] 

where Bit -- qS~§ i.e., 

fll = qZ if l = k - 1 (mod3) 
(58b) 

= 1 otherwise 

Comparing (56) and (57), we see that 

rk(0 ) = Go(O,O ) = Go(1,O ) 
Fk(1 ) = G0(0, 1) (59) 

Each Gt(o, o') tends to a limit as m ---) oo. If we take this limit first, and 
then consider the large-/behavior, we find that 

C,(0,0) = (1 - q ) - '  + 0(q ' )  

Gt(0, 1) = q[(1 - q)(1 - q 2 ) ] - '  + (9(q') (60) 

Gt(1,0 ) = 1 + (9(q t) 

provided that ( l -  k)/3 is an integer. 
The recurrence relations (58), together with the boundary conditions 

(60), define the Gt(o,a') in the m ~  limit. Unfortunately the method 
used in the other three regimes (namely, to expand in powers of q Z) 
becomes rather difficult here, the coefficients not being simple products like 
(41) or (42). 

However, Andrews (19) has used other methods (he defers taking the 
m ~ ~ limit until later, which enables him to combine regime II with III, 
and IV with I), and has obtained series expansions of F~(0) and Fk(1 ). 
Define, for non-negative integers j, 

--r 2 UJ = ~ q  / [ (q  )r(q)j-2r] (6la) 

vj = ~r qr/[ (q2)r(q)j_2r] (61b) 
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where the summations are over all integers r such that 0 < r < �89 Then 
Andrews (19) finds that, in the limit m-~ 0% 

f , (0)  = ~ q3.(.+ l)/2U3n+ 1 

Fl(1 ) = ~ q3n(n+ 1)/2R3 n 

F2(0 ) = ~ ,q.(3.-1)/2u3 "-1 
(62) 

F2(1) = l o.+2v2u3~ 

F3(0) = q"~ + 1 /2u3" 

F3(1 ) = 2'qn(3n+l)/2U3n_l 

where the sums are from n = 0 to n = oo; except for the primed sums, 
which are from n = 1 to n = oo. 

[Given these results, it is possible to guess and to verify the solution of 
(58); in particular, 

GI(O, O) = ~a qnl+n(3n+ 1)/2193n + 1 

O,(0, 1) = 2 'q("-1)t+.(3.+ 1)/2u3._ ' (63) 

Gz(1,0) = ~ q.l+.(3.+ 1)/2u3" 

provided that ( l -  k)/3 is an integer.] 
Just as each of the Rogers-Ramanujan identities expresses a series as a 

product, so has Andrews (19) shown that each of the series in (62) can be 
written as the sum of at most two products: 

F1(0 ) = [ E(q4, q15) + qE(q, qlS)]/Q(q) (64a) 

rl(1 ) = [ E(qT, q15) _ qE(q2, q15)]/Q(q) (64b) 

F2(0 ) = F3(0 ) -- E(q6,q~5)/Q(q) (64c) 

F2(1 ) = F3(1 ) = qE(q3, q]5)/Q(q) (64d) 

where the function E(z, q) is defined by 

E(z,q) = ~ (1 - qn-'z)(1 -- q"z-~)(1 -- q") (65) 
n = l  

I originally conjectured the results (64) from truncated series expansions, 
but without deriving (62). As I remarked in the paragraph before the one 
containing (35), the sublattices 2 and 3 are equivalent, so it is to be 
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expected that F2(01)= F3(o0; however, this is far from obvious in the 
intermediate equations (56)-(62). 

First consider the cases k = 2 and k = 3. Using the definitions (15) of 
the functions G, H, Q, we can write (64c) and (64d) as 

F2(0 ) = F3(0 ) = O(q15)/[ O(q)H(q3)] 
(66) 

F2(1 ) __ F3(1 ) = qQ(q,5)/[ Q(q)G(q3)] 

Substituting these expressions into (36), using (55), and remembering' that 
q -- x 3, we obtain 

P2 ---- P3 = x2H(x)H(xg)/[ G(x)G(x9) + x2H(x)H(xg) ] (67) 

Now we consult the "sums of, products" Rogers-Ramanujan-type 
identities listed by Birch, (17) and find from Eq. (6) therein that 

G(x) G(xg) + x2H(X)H(x9) = [ Q(x3)]2/ I  Q(x)Q(x9) ] (68) 

so (67) simplifies to 

02 = 93 = x2H(x)H(xg) Q(x) Q(x9)/[ Q(x3)] 2 (69) 

The case k = 1 is more complicated. We use the standard elliptic 
function identity (implied by Sections 8.181 and 8.192 of Ref. 20) 

E(z,q) = ~ ( -  1)"q"("+l)/Z(z -" - z "+') (70) 
n = 0  

to write (64a) and (64b) as 

FI(O ) = [ G(xg)Q(x 9) - H(x)Q(x) ]/[ xQ(x3) ] 
(71) 

F1(1 ) = [ G(x)Q(x) + xZH(x9)Q(x9)l/Q(x3 ) 

[We do this by noting that G(q)Q(q) and H(q)Q(q) are of the form (65), 
using (70) to series-expand the numerators in (64a), (64b), and (71), and 
equating the series term-by-term. Note that it follows that each right-hand 
side in (71) can be expanded in integer powers of x3: something that is far 
from obvious.] 

Substituting these expressions for F1(0 ) and Fl(1 ) into (36), we obtain 

H ( x ) [  G(x)Q(x) + x2H(x9)Q(x9) ] 
pl = { Q(xg)[ G(x)G(x9 ) + x2H(x)H(xg) ] } (72) 

Again we can use the identity (68) to simplify the denominator, giving 

01 = H(x) Q(x)[  G(x)Q(x) + x2H(x9)Q(x9) ]/[ Q(x3)] 2 (73) 
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From (69) and (73), the order parameter is therefore 

R = Oi - 02 = G(x)H(x)[  Q(x ) /Q(x3)]  2 

= O ( x ) Q ( x S ) / [  O(x3)] 2 

= I"I (1 - xn)(1 -- XS")/(1 -- X3") 2 (74) 
n = l  

which is a particularly simple result. 
[This expression has a similar form to that for the order parameter M 

of the eight-vertex model, given in Ref. 21 and in Eq. (4.42) of Ref. 12.] 

5.3. Regime I I I  

In this case the analogs of (43) and (44) are 

w o = x, r~ = x H ( x ) / G ( x )  

F(ol ) = ~ q~i(o,+t-.,o,+~) 
(2, m) 

(75) 

(76) 

where 0 < x < 1, q = x 2, the inner sum is over i = 1 . . . . .  m, and Ore+ ~ 
= am+ 2 = 0. The suffix k in (37) is redundant. 

The expression (75) is the same as (56), except that q is inverted and 
the s i are zero. We can therefore evaluate F(0) and F(1) by using the 
recursion relations (58a), with q inverted and /3 l = 1, together with (59): 
Again we let m ---) m. The boundary conditions are then that for l large 

c,(o,0)  = 1 + 0(q') 

Gt(0, 1) = 0(q') (77) 

c , ( 1 , 0 )  = ( 1  - q)- '  + e(q') 

We can expand the G t in powers of q t, and systematically evaluate the  
coefficients from (58a) (with q replaced by q- l ) .  Doing this, we find that 

GI(0,0 ) = ~ q,t+,(3n-l)/2/[(q),(q, q2. ),1 
n = 0  

G,(0,1) = ~ q"'+3"("-~)/2/[(q)~_l(q;q2). ] 
n = l  

Gt(1, 0 ) ~ qnl+n(3n+l)/2 2 = /[(q)~(q;q ) .+ l ]  
n = 0  

(78) 
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From (59), it follows that 
0o 

F ( 0 ) =  ~ qn(3n-])/2/[(q),(q;q2)n ] 
,=0 (79) 

F(1)- -  k q3n(n+l)/2/[(q)n(q;q2)n+l] 
n=0 

Just as the regime I series (49) could be simplified by using the 
Rogers-Ramanujan identities, so can (79) be simplified by using the further 
identities (46) and (44) in the list compiled by Slater. (22) These give 

r(o) = G(q2)Q(q2)/ Q(q) 
(80) 

F(1) = H(q2)Q(qZ)/Q(q) 

From (36) and (75), it follows that 

p = xH(x)H(x4) / [  G(x)G(x 4) dr xH(x)H(x4)]  (81) 

Now we look again at the list of Rogers-Ramanujan "sums-of-products" 
identities given by Birch, (17) and find from Eq. (2) therein the relation 

G(x)G(x 4) -[- xH(x )H(x  4) = [ P( - x) ]2 (82) 

which was proved by Rogers. (18) Thus (81) simplifies to 

p = xH(x)H(x4)/[ P ( -  x)] 2 (83) 

5.4. I:legime IV 

This regime has two ground states and we have to distinguish the cases 
k = 1 and k = 2 in (28b). From (30), (39), (37), and (12), we have 

w o = x -2, ro 2 = - x - lG(x ) /H(x )  (84) 

F~(oi) = ~ qy.i(,,+,-o,+,) (85) 
(2, m) 

where - l < x < 0 ,  q---x 4 and the inner sum is over i =  l, . . . , m - 1. 
The expression (85) is the same as that in (44), except that q is inverted 

and the s i are not all zero. We can proceed as in (45) and (46). Define 

G,(o , )=  ~, qZ,(s,+,-o,+0 (86) 
(l+ 1, m) 

where the inner sum is now over i = / ,  . . . .  m - 1. Considering explicitly 
the contributions from at+ I = 0 and az+ ~ = 1, we obtain 

Gt(0) = fit[ G,+1(0) + q-tGt+,(1)] (87a) 

c,(1) 
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where 

Clearly 

/3 l = 1 if l - k is even 
(87b) 

__ q t if l - k is odd 

Fk(0) = C,(0), Fk(1) = 6,(1) (88) 

Each Gz(0 ) and Gt(1 ) tends to a limit as m ~  oo, and these limiting 
values satisfy the boundary condition 

6 , ( 0 ) ~  (1 - q ) - l .  6 , ( 1 ) - ~  1 as t ~  ~ (89) 

provided l -  k is even. 
We can expand Gl(O ) and Gz(1 ) in powers of qt. Substituting the 

expansions into (87) and equating coefficients, we find that, for l - k even, 

oo 

o,(o) E . , + . 2 . . .  = q /[q)2,,+~ 
.=0 (90) 

09 

Gt(1 ) --- ~] q"t+"2/(q)2,, 
n = 0  

The values for l -  k odd can be readily obtained from (87). From (88) it 
follows that 

oo 

r , (o)  = E q'("+')/(q)2.+l 
n = 0  

oo 

F,(1) = ~ q"(n+l)/(q)2. 
.=0 (91) 

r2(0 ) ~ .2 = q / ( q ) 2 .  
n = 0  

oo 
n 2 

F2(1) = ~] q / (q)2 . -1  
n = l  

Again we look at the list of Rogers-Ramanujan-type identities com- 
piled by Slater. (22) From her equations (94), (99), (98), and (96) we obtain 

F~(O) = H ( -  q)/P(q) 
FI(1 ) -- G( -  q)/P(q) 
F2(0) = G(q4)/p(q) (92) 

F2(1)-- qH(q4)/e(q) 

where again the functions Q, P, G,H are those defined in (15). 
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Substituting these results into (36), using (84) and q = X 4 we obtain 

Pl = G ( x ) G ( -  x4) / [  G ( x ) G ( -  x4) - x H ( x ) H ( -  x4)] 
(93) 

02 = - x3G(x)H( x'6)/[ H(x)  G (x 16) __ x 3 G  (x )H(x  16)] 

The first of these denominators does not appear to be explicitly 
mentioned in the literature, but Ramanujan did state, and Watson (23) 
proved, that 

G ( x ) H ( -  x) + G ( -  x)H(x)  = 2/[  p(x2) ] ' (94) 

[this is Eq. (23) of Birch('7~] �9 Further, Rogers (15) proved that 

G ( - x 4 ) = Q ( x E ) [ H ( x ) +  H ( - x ) ] / [ 2 Q ( x S ) ]  (95a) 

H ( - x  4) --" Q(xE)[G(x) - G( -x ) ] / [ExQ(x8)]  (95b) 

H ( x  16) = Q ( x 2 ) [ H ( x ) -  H( -x ) ] / [2xaQ(x8)]  (95c) 

From (94), (95a), and (95b), it follows that 

G(x)G( - x 4) - xH(x)H(  - x 4) = P(  - x 2) (96) 

Also, Ramanujan stated [Eq. (5) of Birch(17)], and Rogers (18) proved, 
that 

H(x)G(x  16) - x3G(x)H(x '6) = P ( - x  2) (97) 

Both denominators in (93) can therefore be simplified (in fact they are 
equal), giving 

p, = G ( x ) G ( -  x 4 ) / P ( -  x 2) 
(98) 

P2 = - x3G(x)H(x16)/ P ( -  x2) 

Using the identities (95a) and (95c), it follows that the mean total 
density is 

P = �89 + P2) = �89 2 (99) 

and the order parameter is 

R = Pl - P2 = G(x)H(x)[P(x2)] 2 

= [ Q(X2 ) ] 2 Q ( X 5 ) / (  Q(X)[  Q(X 4)]2) 

o0 

= .=H (1 - x2n)2(1 - xS.) /((1 - x")(1 - x4~) 2} (100) 
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This has a similar form to the order parameter (74) in regime II, and to 
the eight-vertex model order parameter M 0 [Eq. (15) of Ref. 21, Eq. (4.42) 
of Ref. 12], being a ratio of products of Q functions. 

5.5. Comments 

This completes the derivation of the sublattice densities and order 
parameters of the generalized hard hexagon model. I have discussed the 
four regimes separately, but we can now see many common features. We 
can write down recursion relations defining Fk(0 ) and Fk(1 ). Using these, or 
using finite-m expressions, (19) Fk(0 ) and Fk(1 ) can be written as infinite 
series. In every case there then exists a Rogers-Ramanujan-type identity by 
which the series can be written as an infinite product, or at worst the sum 
of two such products. (In regimes I, III, and IV these identities are included 
in the list compiled by Slater(22); in regime II we need the new identities 
obtained by Andrews. (19)) 

Further, when we substitute the results into (36), we always find that 
the denominator can be written as a single product by using the "sums-of- 
products" Rogers-Ramanujan identities listed by Birch. ~ Finally, in 
regimes II and IV the order parameter R = Ol - 02 is found to be a simple 
ratio of products of Q functions. 

It is fascinating that these Rogers-Ramanujan-type identities occur so 
frequently in the working. With the benefit of hindsight, we can see that 
this must in some way be connected with the apparently uninteresting 
relations (7) and (8), and our desire to parametrize these so as to make e L 
and e M single-valued functions of a parameter w, A being independent of 
w. This led automatically to an elliptic function parametrization where the 
one-fifth period plays a special role, and to the relation (16) involving the 
functions G(x) and H(x). 

6. CRITICAL BEHAVIOR 

The behavior of the functions Q(x), P(x), G(x), H(x) near x = _ 1 
can be studied by using the conjugate modulus relations for elliptic theta 
functions, e.g., 

Q(e-~,) = (2~r/X),/2exp[ 2t 
24 

Q ( - e - X )  = (~r/X)'/2exp 24 

6X Q(e-n'~2/x) 

247t Q ( -  e -,;IX) 

(lOl) 
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for )t > 0. Doing this, we are 

I and IV: 

II and III: 

Then in all regimes it is 

= Ac l'I 
n = l  

led to define parameters e and p by 

x = - e -~2/5~, P = - e-~ (102) 
X = e -47r2/5e,  p = e -e 

true that 

[ l+�89 5/2 
1 + 1(1 + ~/~)pn + p2n (103) 

where A c is the "critical" value of A defined by (9). 
Thus p is zero when [ A] = A c. This occurs on the (I, II) and (III, IV) 

regime boundaries. Further, p vanishes linearly with A 2 - m 2. 
On these boundaries the sublattice densities are all equal to the critical 

mean density 

Pc = (5 - ~ - ) / 1 0  = 0 .27639 . . .  (104) 

Near the boundaries we find that the mean density O and the order 
parameter R behave as 

I: p = Pc - 5-J/2(_/7)2/3 + (~(p) 

II: P = Pc + 5-1/2P 2/3 + O(p) 

III: P = Pc - 5-1/2P 1/4 + (~(P) 
(lO5) 

IV: p = Pc + 5 ' / 2 ( - P )  + (~(p4) 

II: R=(3/~/5)pl/9[1-p+ 2p 5/3 +0(p2)] 

IV: R=(2/v~)(-p)l/a[1-p+O(p2)] 

In particular, the fifth of these equations implies that the original hard 
hexagon model (where L-->O and M ~ - o o )  has a critical exponent 
fl = 1 /9  (as well as a = 1/3), as reported earlier. 
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